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Basic definition

Definition
Let M be a compact manifold.

K (M) =
{[E ]− [F ] | E ,F vector bundles }

∼

[E ]− [F ] ∼ [E ′]− [F ′] if ∃G, E ⊕ F ′ ⊕G ∼= E ′ ⊕ F ⊕G.

(Grothendieck group of vector bundles over M.)
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Basic definition

K (M) is an abelian group.
K (pt) ∼= Z by [E ]− [F ] 7→ rk(E)− rk(F ).
In fact, it is a ring for the product [E ] · [F ] = [E ⊗ F ].
Functoriality : if f : M → M ′ then f ∗ : K (M ′)→ K (M).
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K -theory of non compact spaces

First definition : let M̃ be the one-point compactification of M.

K (M) = ker(K (M̃)
i∗→ K (∞))

where i : {∞} → M̃ is the inclusion.
Second definition :

K (M) =
{(E ,F ,d) | d : E → F iso outside some compact subset}

∼

where two triples are equivalent if they are stably homotopic.
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Basic properties

Homotopy invariance : if ft : X → Y then
f ∗0 = f ∗1 : K (Y )→ K (X ).
Higher K -theory groups : K−n(X ) = K (X × Rn).
Bott periodicity : K n+2(X ) ∼= K n(X ).
Exactness : if Y is closed in X then

· · ·K n−1(X )→ K n−1(Y )→ K n(X\Y )→ K n(X )→ K n(Y )→ · · ·

is exact.
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Examples

K n(Rm) = 0 if n −m odd, Z otherwise.
If n even, K 0(Sn) = Z2, K 1(Sn) = 0. If n is odd then
K 0(Sn) = K 1(Sn) = Z.
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Bott element

Let S2 = {(x , y , z) | x2 + y2 + z2 = 1}. The nontrivial generator
of [p] = K (S2) is the image of the projection

p =

(
1+x

2
y+iz

2
y−iz

2
1−x

2

)

i.e. E(x ,y ,z) = px ,y ,z(C2).
[p]− [1] is the image of a generator β ∈ K (R2) ∼= Z.
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Historical motivation : Atiyah-Singer’s index theorem
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Elliptic operators

Let M be a compact manifold. Let E and F be two vector
bundles on M. Let D : C∞(M,E)→ C∞(M,F ) be a differential
operator.
Let σD : T ∗(M)→ L(E ,F ) be its symbol.
For instance, σa(x) ∂

∂x
(x , ξ) = a(x)(iξ).

An operator is elliptic if its symbol is invertible outside some
compact subset of T ∗M.
Examples : Laplacian, Dirac operator, signature operator,...
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Index problem

Problem : compute

Indexa(D) = dim(ker D)− dim(cokerD) ∈ Z.

(analytic index).

Atiyah-Singer :
Use K -theory to define a topological index Indext (D) ;
Show that both indices coincide ;
Compute Indext (D) in terms of differential forms.
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First step : (E ,F , σD) defines an element of K (T ∗M) since D is
elliptic.
To obtain a topological index, one needs a map

K (T ∗M)→ Z.
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Elliptic complexes

Let 0→ E0 d→ E1 → · · · d→ En → 0 a complex of vector bundles
over a (non compact) manifold M such that d2 = 0. It is elliptic if
for x outside a compact subset of M,

0→ E0
x

d→ E1
x → · · ·

d→ En
x → 0

is exact.
Then (Eeven,Eodd ,d) determines a K -theory element of M.
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Thom isomorphism

Let π : E → M be a complex vector bundle of dimension p. For
all v ∈ E , exterior multiplication

0→ Λ0Eπ(v)
v∧·→ Λ1Eπ(v)

v∧·→ · · · v∧·→ ΛpEπ(v) → 0

determines an elliptic complex over E , hence an element

λE ∈ K (E).

Then x 7→ x ⊗ λE is an isomorphism K (M)
∼=→ K (E).
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Topological index

Let i : X → Y is an inclusion of manifolds, and N the normal
bundle. Let π : TX → X .

π∗(NC) ∼= normal bundle of (i∗ : TX → TY ) ∼= U.

(U = tubular neighborhood of TX in TY .)

Let i! : K (TX )
Thom∼= K (U)→ K (TY ).

Indt : K (TX )
i!→ K (TE)

j!← K (TP) = Z

where i : X → E embedding in vector space and j : P → E .
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Equality of indices

Both Inda and Indt satisfy :

K (TX )
i! //

Ind
%%KKKKKKKKKKK

K (TY )

Ind
��
Z

If X = pt then Ind = IdZ.

=⇒ Inda = Indt .
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Why does that help ?

Chern character : if E → M complex vector bundle, then

ch(E) = [Tr exp(−∇
2

2πi
)] ∈ Heven(M,Q)

is a ring homomorphism. It can be extended to a ring
isomorphism

K ∗(M)⊗Z Q→ H∗(M,Q).
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Chern and Thom isomorphism

The Chern character behaves well with respect to the Thom
isomorphisms : if E → X is a complex vector bundle, then

K (X )
Thom //

ch
��

K (E)

ch
��

H∗(X ,Q)
Thom // H∗c (E ,Q)

commutes up to multiplication by an element of H∗(X ,Q) that
can be computed.
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Chern and index

It follows that

K (TM)
Ind //

ch
��

K (P) = Z

ch
��

H∗c (TM,Q)
Thom// H∗(P,Q) = Q

commutes up to multiplication by an element of H∗(TM,Q). In
fact,

Ind(D) = (−1)n
∫

T∗M
ch(σD)Td(TCM)
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Examples

if dim(M) = 4k is spin then Â(M) = ind(Dirac) ∈ Z
if M is oriented then sign(M) = ind(d + d∗) (index of the
signature operator).
Index theorems for foliations, singular spaces, etc. use
K -theory of operator algebras
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K -theory has many applications

e.g. in topology : vector field problem on a sphere (Adams,
1962).

If n = 2c16du (u odd, 0 6 c 6 3), then the maximal number of
linearly independent continuous tangent vector fields on Sn−1 is
2c + 8d .
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Some generalizations of complex K -theory
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Equivariant K -theory

If G is a compact group acting on M, the whole theory is
unchanged. Use vector bundles with an action of G.

KG(pt) = R(G)

(ring of representations of G).

If G is not compact, the above definition is not appropriate
(KKG-theory is more adequate).
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K -theory of algebras

Let A be a unital algebra.

Definition
An A-module E is finitely generated projective if ∃E ′, ∃n,
E ⊕ E ′ ∼= An.

Theorem
(Swan) If M is compact and E → M is a vector bundle then
C(M,E) is a finitely generated projective over C(M).

(∃E ′, E ⊕ E ′ trivial).
More precisely, there is an equivalence of categories between
vector bundles over E and f.g.p. modules over C(M).
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K -theory of algebras

Definition

K (A) =
{[E ]− [F ] | E ,F f.g.p. modules over A}

∼
[E ]− [F ] ∼ [E ′]− [F ′] if ∃G, E ⊕ F ′ ⊕G ∼= E ′ ⊕ F ⊕G.

Then K (M) ∼= K (C(M)).
Remark : one may assume F = An for some n.
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A f.g.p. is the image of a projection p ∈ Mn(A) for some n.

Definition

p and p′ are similar if ∃u ∈ GL(n,A), p′ = upu−1.

Definition

K (A) =
{[p]− [q] | p,q projection in some Mn(A)}

∼
[p]− [q] ∼ [p′]− [q′] if ∃r , p ⊕ q′ ⊕ r and p′ ⊕ q ⊕ r similar.

This definition agrees with the one using projective modules.
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Other point of view

K−n(A) = πn−1(GL∞(A)).
For instance, K−1(pt) corresponds to {[E ]− n | rk(E) = n}
where E is a vector bundle over S1 = R/Z. The bundle E is
trivial over [0,1). The identification E0

∼= E1 comes from an
element u ∈ GLn(A). Thus, K−1(A) = π0(GL∞(A)).
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KO-theory

Use real vector bundles instead of complex vector bundles.
The theory is 8-periodic.
N.B. KO-theory 6= Real K -theory.

Example : K−n(pt) = Z, 0, Z, 0, . . .
KO−n(pt) = Z,Z/2,Z/2,0,Z,0,0,0, . . .
For instance, KO−1(pt) = π0(GL∞(R)) = Z/2.
KO−2(pt) = limn π1(SO(n)) = Z/2.
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KR-theory

Definition
A Real space is a space endowed with an involution τ : X → X .

We write x̄ = τ(x) for simplicity.
Examples : Rp,q = Rq ⊕ iRp with complex conjugation.
R1,1 ∼= C.
Pn(C) with complex conjugation.

Definition
Real vector bundle : Ex → Ex̄ involution which is antilinear on
each fiber.

IECL, UMR 7502 du CNRS KR-theory



Real groups

Definition
A Real group is a group which is a Real space such that
ḡh = ḡh̄.

Actions of Real groups on Real spaces will satisfy g · x = ḡ · x̄
for all (g, x) ∈ G × X .
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KR-theory

One defines KR-theory in the same way.

Definition
Let M be a Real compact manifold.

KR(M) =
{[E ]− [F ] | E ,F Real vector bundles }

∼

[E ]− [F ] ∼ [E ′]− [F ′] if ∃G, E ⊕ F ′ ⊕G ∼= E ′ ⊕ F ⊕G.
(Can add an action of a Real group in the definition to get
KRG(M).)
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Real algebras

Definition
A Real algebra is a pair (A, τ) where A is a complex algebra,
and τ : A→ A is an antilinear involution.

e.g. A = C(M) where M is a Real space.

A is Z/2Z-graded if A = A0 ⊕ A1 with Ai · Aj ⊂ Ai+j .
Tensor products of graded algebras : A⊗̂B is endowed with the
product

(a⊗ b)(a′ ⊗ b′) = (−1)|b| |a
′|aa′ ⊗ bb′.

The definition of KR(A) is like the one of K (A) if A is not
Z/2Z-graded.
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KR-theory generalizes KO-theory

Let XR = {x ∈ X | x̄ = x}. Restriction of Real vector bundles to
XR are complexifications of real vector bundles over XR, thus
there is a map

KR(X )→ KR(XR) ∼= KO(XR).

In particular, if τ is trivial then KR(X ) = KO(XR).
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KR-theory generalizes complex K -theory

Let Sp,q be the unit sphere in Rp,q.
S1,0 consists of two conjugate points.
Let X be a space (without involution).
X × S1,0 consists of two copies of X which are conjugate.

KR(X × S1,0) ∼= K (X ).
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Example of KR-theory element

Let X = P(Cn) (the space of complex lines in Cn) with
involution=complex conjugation.
The Hopf bundle H is defined by Hx = x .
For n = 2, X ∼= S1,1 and [H]− 1 ∈ KR(R1,1) is a generator.
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Basic properties

Homotopy invariance : if ft : X → Y (continuous, involution
preserving) then f ∗0 = f ∗1 : KR(Y )→ KR(X ).
Higher KR-theory groups : KR−p,−q(X ) = KR(X × Rp,q).
KRp+r ,q+r (X ) ∼= KRp,q(X ). Denote this group by
KRp−q(X ).
Bott periodicity : KRn+8(X ) ∼= KRn(X ).
Exactness : if Y is closed in X then

· · ·KRn−1(X )→ KRn−1(Y )→ KRn(X \ Y )

→ KRn(X )→ KRn(Y )→ · · ·

is exact.
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External product in Real K -theory

For X , Y compact,

KR(X )⊗ KR(Y )→ KR(X × Y )

is defined by [E ]⊗ [F ] 7→ [E × F ].
This extends to

KRp,q(X )⊗ KRp′,q′(Y )→ KRp+p′,q+q′(X × Y ).

This is still valid for X ,Y noncompact (recall KR(X ) ⊂ KR(X̃ )).
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Description of KR(pt)

Recall K−n(pt) = Z, 0, Z, 0, . . .
Denote by µ2 = [H]− [1] the Bott generator, then µk

2 generates
K 2k (pt).

KR−n(pt) = KO−n(pt) = Z,Z/2,Z/2,0,Z,0,0,0, . . ..
Let η1 = [L]− [1] where [L] is the Möbius band. Then η1 and η2

1
are 6= 0.
η2

4 = 4.
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The complexification operation

c : KR(X )→ K (X )

is the forgetful functor (forget the involution).

Particular case : if X = XR then

c : KO(X )→ K (X ), [E ] 7→ [E ⊗R C].
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The realization operation

r : K (X ) → KR(X )

[E ] 7→ [E ⊗ τ∗Ē ]

where (τ∗Ē)x = Ex̄ .

The Real structure on E ⊗ τ∗Ē is τ(ξx , ηx̄ ) = (ηx̄ , ξx ).
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cr(α) = α + α∗

where ∗ : K (X )→ K (X ), [E ] 7→ [τ∗Ē ].

rc(α) = 2α

because of the isomorphism

Ex ⊕ Ex → Ex ⊕ Ex̄

(ξ, η) 7→ (ξ + iη, ξ̄ − i η̄).
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Case X = XR

KO(X )
c
−→
←−

r
K (X ).

c(KO(X )) ⊂ {α ∈ K (X ) | α∗ = α} =: K (X )0.

KO(X )⊗Z Z[
1
2

] ∼= K (X )0 ⊗Z Z[
1
2

].
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Case X = pt

c([1]) = 1, c(η1) = c(η2
1) = 0, c(η4) = 2µ2

2,
r([1]) = [2], r(µ2) = η2

1, r(µ2
2) = η4.
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Clifford algebras

Let Q be a quadratic form on an R-vector space V . The Clifford
algebra of (V ,Q) is the quotient of the free algebra over V by
the relations

v · v = Q(v).

For instance, if Q = 0 then Cliff(V ,Q) = ΛV has dimension 2n.
If V has a Q-orthogonal basis (e1, . . . ,en), then Cliff(V ,Q) has
basis

(ei1ei2 · · · eik )16i1<i1<···ik6n.

Products can be computed by e2
i = Q(ei)1 and eiej + ejei = 0

if i 6= j .
dim(Cliff(V ,Q)) = 2n but Cliff(V ,Q) 6∼= ΛV .
Cliff(V ,Q) is Z/2Z-graded.
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Clifford algebras

Consider
Q(x1, . . . , xq, xq+1, . . . , xq+p) = x2

1 + · · ·+x2
q − (x2

q+1 + · · ·+x2
q+p)

the quadratic form of signature (q,p) on Rp+q.
Denote by Cp,q its Clifford algebra.
Cp,0 = R,C,H,H⊕H,

M2(H),M4(C),M8(R),M8(R)⊕M8(R),M16(R), . . .
C0,q = R,R⊕ R,M2(R),M2(C),M2(H),

M2(H)⊕M2(H),M4(H),M8(C),M16(R), . . ..

Using Cp,q⊗̂Cp′,q′ ∼= Cp+p′,q+q′ , one can compute Cp,q for all
p,q.
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K -theory of graded, unital algebras

Let A = A0 ⊕ A1 be a Real Z/2Z-graded algebra.
A Real, Z/2Z-graded module over A is an A module of the form
E = E0⊕E1, endowed with an antilinear involution τ , such that

E i · Aj ⊆ E i+j ;
τ(ξa) = τ(ξ)τ(a) for all (ξ,a) ∈ E × A.
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K -theory of graded, unital algebras

The algebra End(E) is again Z/2-graded and Real :
deg(T ) = 1 if deg(T (ξ)) = deg(ξ) + 1 (mod 2) for all ξ ∈ E ;

T̄ (ξ) = T (ξ̄).

The (graded) KR-theory of A is the set of graded, Real
A-modules modulo degenerate ones.

Degenerate means : ∃T ∈ EndA(E), T 2 = Id, deg(T ) = 1,
T = T̄ .
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This is coherent with the def for ungraded algebras

[E ] = [E0 ⊕ E1] graded −→ [E0]− [E1].
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KO(C0,1) = 0

C0,1 = 〈1, ε〉 with ε2 = 1, ε of degree 1.
If E = E0 ⊕ E1 is a graded C0,1-module, then ε : E0 ∼=→ E1. We
can assume E = E0 ⊕ E0 and

ε =

(
0 1
1 0

)
Take T = ε =⇒ E is degenerate.
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KO(C1,0) = Z/2Z

C1,0 = 〈1,e〉 with e2 = −1, e of degree 1.
If E = E0 ⊕ E1 is a graded C1,0-module, then e : E0 ∼=→ E1. We
can assume E = E0 ⊕ E0 and

e =

(
0 −1
1 0

)

If T =

(
0 S−1

S 0

)
is an endomorphism of E , it commutes with e

so S2 = −1. Possible iff dim(E0) is even.
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KO(C2,0) = Z/2Z

C2,0 = 〈1,e1,e1,e1e2〉 with e2
1 = e2

2 = −1, e1e2 = −e2e1, ej of
degree 1, i.e. C2,0 ∼= H.
Identify C with 〈1,e1e2〉.
If E = E0 ⊕ E1 is a graded C2,0-module, then E j are C-vector
spaces and e1 : E0 ∼=→ E1. We can assume E = E0 ⊕ E0 and

e1 =

(
0 −1
1 0

)

If T =

(
0 S−1

S 0

)
is an endomorphism of E , then S is antilinear

and S2 = −Id. Possible iff dim(E0) is even.
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KO(C4,0) = Z

C4,0 ∼= C0,4 ∼= M2(H)

graded by deg
(
∗ 0
0 ∗

)
= 0, deg

(
0 ∗
∗ 0

)
= 1.

In general K (Mn(A)) ∼= K (A), so

KO(C4,0) = KO(C0,4) = KO(H) = Z.

The generator is [H] (H is a module over itself).
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KO(Cp,p) = Z

Cliff(V )⊗̂Cliff(−V ) ∼= L(Λ∗V ).

Thus Cp,p ∼= M2p (R).
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Relation between KR-theory and Clifford algebras

KRp,q(A) ∼= KR(A⊗̂Cp,q).

η1 = [C1,0] ∈ KO(C1,0) ∼= KR1,0(pt) (C1,0 is a module over
itself).
η2 = [C2,0] ∈ KO(C2,0) ∼= KR2,0(pt).
η4 = [H2] ∈ KO(M2(H)) ∼= KO(C4,0) ∼= KR4,0(pt).
If this is granted, then KRp,q(A) ∼= KRp+r ,q+r (A) = K p−q(A) and
KRp+8(A) ∼= KRp(A).
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Check that c(η4) = 2µ2
2

η4 = [H] as an H-module.
H⊗ C ∼= M2(C) because

H = {
(

a −b̄
b ā

)
| a,b ∈ C},

and M2(C) = H⊕ iH.

As a M2(C)-module, [M2(C)] = 2[C2].
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Check that η2
4 = 4

H⊗H ∼= M4(R),

which is isomorphic to 4[R4] as a M4(R)-module.
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KRn−4(X ) and KRn(X )

Composition of multiplications by η4

KRn(X )→ KRn−4(X )→ KRn−8(X ) ∼= KRn(X )

is 4 Id, thus

KRn(X )⊗Z Z[
1
2

] ∼= KRn−4(X )⊗Z Z[
1
2

].

Remark : KR−4(X ) = KR(C(X ,H)C) is quaternionic K -theory.
A quaternionic vector bundle on (X , τ) is a complex vector
bundle E → X together with a conjugate linear map J : E → E
commuting with the Real structure on X , such that J2 = −Id.

IECL, UMR 7502 du CNRS KR-theory



KR(X × Sp,0)

This group cannot always be identified with a “known” K -theory
group but can be computed by means of a Gysin-type exact
sequence.

· · · → KRp−q(X )
η

p
1 ·→ KR−q(X )

p∗1→ KR−q(X × Sp,0)→ · · ·
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KR(X × Sp,0)

Recall KR(X × S1,0) ∼= K (X ).
KR(X × S2,0) = KSC(X ) (self-conjugate K -theory) is the
Grothendieck group of homotopy classes of self-conjugate
bundles over X .

(A self-conjugate bundle over (X , τ) is a complex vector bundle
E → X together with an isomorphism α : E → τ∗E .)

For p > 3, using η3
1 = 0 we have an exact sequence

0→ KR−q(X )
p∗1→ KR−q(X × Sp,0)→ KRp+1−q(X )→ 0
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Remark : index theory for families

If π : Y → X is a Real fibration, E → Y a Real vector bundle
and D = (Dx )x∈X is a family of Real, elliptic differential
operators, one can construct an index

Ind(D) ∈ KR(X ).
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K -theory and Fredholm operators

Elliptic operators on a manifold provide Fredholm operators on
a Hilbert space. Hence, K -theory elements are often
conveniently described in terms of Fredholm operators.

(T is Fredholm ⇐⇒ ∃S, TS − Id and ST − Id are of finite rank,
⇐⇒ ∃S′ TS′ and S′T are compact, ⇐⇒ ker T and coker(T )
are finite dimensional.)
Example : π0(Fred) ∼= K (pt) given by T 7→ [ker T ]− [coker(T )].
The composition

Fred→ K (pt)
∼=→ Z

is T 7→ ind(T ).
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K -theory and Fredholm operators

More generally, one can show that for X compact,
K (X ) = [X ,Fred].

K (X ) is the Grothendieck group of homotopy classes of families
D = (Dx )x∈X of self-adjoint, degree 1 Fredholm operators.

Dx =

(
0 T ∗x
Tx 0

)
.

(If X is locally compact and not compact, one needs to add a
condition of vanishing at infinity.)
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Advantages of this definition

No need of one-point compactifications
Easily extends to (Z/2Z-graded) Clifford bundles
The external product K (X )× K (Y )→ K (X × Y ) is
described by [D] · [D′] = [D⊗̂1 + 1⊗̂D′].
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The Bott element

Let (V ,Q) be a (real) quadratic space. Let
A = C0(V ,Cliff(V ,Q)). Then

KO(A) = 〈[β]〉 ∼= Z

where [β] is the “Bott element” :

βv = Clifford multiplication by
v√

1 + ||v ||2
.

Note that β is indeed of degree 1, that 1− β2
v =

1
1 + ||v ||2

tends

to 0 as ||v || → ∞.
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For V = Rp,q, this gives

KR(X ) ∼= KR(C0(X × Rp,q,Cp,q)C).

More generally, if π : V → X is a Real vector bundle, there is a
Thom isomorphism

KRn(X ) ∼= KRn(C0(V , π∗Cliff(V )C)).

If there exists a spin structure on V , then KRn(X ) ∼= KRn(V ).
Otherwise, KR(X ) is a twisted K -theory group of V .
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A few references

(On complex K -theory and index theory) Atiyah and
Singer, The index of elliptic operators I, II, III,...
Atiyah, K -theory and reality.
Karoubi, K -theory, an introduction.
Seymour, The Real K -theory of Lie groups and
homogeneous spaces.
(Not on Real K -theory) Karoubi, Twisted K -theory, old and
new.
(For operator algebraists :) Kasparov, The operator
K -functor and extensions of C∗-algebras
(For operator algebraists :) Moutuou, PhD thesis.
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