KR-theory

Jean-Louis Tu

Université de Lorraine - France

Lyon, 11-13 septembre 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

IECL, UMR 7502 du CNRS KR-theory

Complex K-theory

IECL, UMR 7502 du CNRS KR-theory

Definition

Let *M* be a compact manifold.

$$K(M) = \frac{\{[E] - [F] \mid E, F \text{ vector bundles }\}}{\sim}$$

$$[E] - [F] \sim [E'] - [F']$$
 if $\exists G, E \oplus F' \oplus G \cong E' \oplus F \oplus G$.

(Grothendieck group of vector bundles over M.)

(日)

K(M) is an abelian group. $K(pt) \cong \mathbb{Z}$ by $[E] - [F] \mapsto rk(E) - rk(F)$. In fact, it is a ring for the product $[E] \cdot [F] = [E \otimes F]$. Functoriality : if $f : M \to M'$ then $f^* : K(M') \to K(M)$.

크

First definition : let \tilde{M} be the one-point compactification of M.

$$K(M) = \ker(K(\tilde{M}) \stackrel{i^*}{\to} K(\infty))$$

where $i : \{\infty\} \to \tilde{M}$ is the inclusion. Second definition :

 $K(M) = \frac{\{(E, F, d) \mid d : E \to F \text{ iso outside some compact subset}\}}{\sim}$

(日)

where two triples are equivalent if they are stably homotopic.

Basic properties

- Homotopy invariance : if $f_t : X \to Y$ then $f_0^* = f_1^* : K(Y) \to K(X)$.
- Higher *K*-theory groups : $K^{-n}(X) = K(X \times \mathbb{R}^n)$.
- Bott periodicity : $K^{n+2}(X) \cong K^n(X)$.
- Exactness : if Y is closed in X then

$$\cdots \mathcal{K}^{n-1}(X) \to \mathcal{K}^{n-1}(Y) \to \mathcal{K}^n(X \setminus Y) \to \mathcal{K}^n(X) \to \mathcal{K}^n(Y) \to \cdots$$

▲ロ▶ ▲郡▶ ▲臣▶ ▲臣▶ ―臣 – のへで

is exact.

- $K^n(\mathbb{R}^m) = 0$ if n m odd, \mathbb{Z} otherwise.
- If *n* even, $K^0(S^n) = \mathbb{Z}^2$, $K^1(S^n) = 0$. If *n* is odd then $K^0(S^n) = K^1(S^n) = \mathbb{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Let $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$. The nontrivial generator of $[p] = K(S^2)$ is the image of the projection

$$p=egin{pmatrix}rac{1+x}{2}&rac{y+iz}{2}\rac{y-iz}{2}&rac{1-x}{2}\end{pmatrix}$$

i.e. $E_{(x,y,z)} = p_{x,y,z}(\mathbb{C}^2)$. [p] - [1] is the image of a generator $\beta \in K(\mathbb{R}^2) \cong \mathbb{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Historical motivation : Atiyah-Singer's index theorem

A (B) > A (B) > A (B) >

크

Let *M* be a compact manifold. Let *E* and *F* be two vector bundles on *M*. Let $D : C^{\infty}(M, E) \to C^{\infty}(M, F)$ be a differential operator.

Let
$$\sigma_D : T^*(M) \to \mathcal{L}(E, F)$$
 be its symbol.

For instance,
$$\sigma_{a(x)\frac{\partial}{\partial u}}(x,\xi) = a(x)(i\xi)$$
.

An operator is *elliptic* if its symbol is invertible outside some compact subset of T^*M .

Examples : Laplacian, Dirac operator, signature operator,...

(日)

Problem : compute

$$\operatorname{Index}_{a}(D) = \dim(\ker D) - \dim(\operatorname{coker} D) \in \mathbb{Z}.$$

(analytic index).

Atiyah-Singer :

- Use *K*-theory to define a topological index Index_t(*D*);
- Show that both indices coincide;
- Compute $Index_t(D)$ in terms of differential forms.

・ロト ・聞 ト ・ ヨト ・ ヨト

First step : (E, F, σ_D) defines an element of $K(T^*M)$ since *D* is elliptic.

To obtain a topological index, one needs a map

 $K(T^*M) \to \mathbb{Z}.$

Let $0 \to E^0 \xrightarrow{d} E^1 \to \cdots \xrightarrow{d} E^n \to 0$ a complex of vector bundles over a (non compact) manifold *M* such that $d^2 = 0$. It is *elliptic* if for *x* outside a compact subset of *M*,

$$0 \to E^0_x \stackrel{d}{\to} E^1_x \to \cdots \stackrel{d}{\to} E^n_x \to 0$$

is exact.

Then (E^{even}, E^{odd}, d) determines a *K*-theory element of *M*.

A (10) A (10)

Let $\pi : E \to M$ be a complex vector bundle of dimension p. For all $v \in E$, exterior multiplication

$$0 \to \Lambda^0 E_{\pi(v)} \stackrel{v \wedge \cdot}{\to} \Lambda^1 E_{\pi(v)} \stackrel{v \wedge \cdot}{\to} \cdots \stackrel{v \wedge \cdot}{\to} \Lambda^p E_{\pi(v)} \to 0$$

determines an elliptic complex over E, hence an element

 $\lambda_E \in K(E).$

< ロ > < 圖 > < 圖 > < 필 > .

Then $x \mapsto x \otimes \lambda_E$ is an isomorphism $K(M) \stackrel{\cong}{\rightarrow} K(E)$.

Let $i : X \to Y$ is an inclusion of manifolds, and N the normal bundle. Let $\pi : TX \to X$.

 $\pi^*(N_{\mathbb{C}}) \cong$ normal bundle of $(i_* : TX \to TY) \cong U$.

$$(U = \text{tubular neighborhood of } TX \text{ in } TY.)$$

Let $i_! : K(TX) \stackrel{Thom}{\cong} K(U) \to K(TY).$

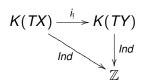
$$\operatorname{Ind}_t: K(TX) \stackrel{i_!}{\to} K(TE) \stackrel{j_!}{\leftarrow} K(TP) = \mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

where $i: X \rightarrow E$ embedding in vector space and $j: P \rightarrow E$.

۰

Both Ind_{*a*} and Ind_{*t*} satisfy :



イロト イヨト イヨト イヨト

2

• If X =pt then Ind =Id $_{\mathbb{Z}}$.

 \implies Ind_{*a*} = Ind_{*t*}.

Chern character : if $E \rightarrow M$ complex vector bundle, then

$$\operatorname{ch}(E) = [\operatorname{Tr} \exp(-\frac{\nabla^2}{2\pi i})] \in H^{even}(M, \mathbb{Q})$$

is a ring homomorphism. It can be extended to a ring isomorphism

 $K^*(M) \otimes_{\mathbb{Z}} \mathbb{Q} \to H^*(M, \mathbb{Q}).$

크

The Chern character behaves well with respect to the Thom isomorphisms : if $E \rightarrow X$ is a complex vector bundle, then

$$\begin{array}{c|c} \mathcal{K}(X) \xrightarrow{Thom} \mathcal{K}(E) \\ ch & \downarrow ch \\ \mathcal{H}^{*}(X, \mathbb{Q}) \xrightarrow{Thom} \mathcal{H}^{*}_{c}(E, \mathbb{Q}) \end{array}$$

commutes up to multiplication by an element of $H^*(X, \mathbb{Q})$ that can be computed.

It follows that

$$\begin{array}{c|c} \mathcal{K}(\mathcal{T}\mathcal{M}) & \xrightarrow{Ind} & \mathcal{K}(\mathcal{P}) = \mathbb{Z} \\ ch & & \downarrow ch \\ \mathcal{H}_{c}^{*}(\mathcal{T}\mathcal{M}, \mathbb{Q}) & \xrightarrow{Thom} \mathcal{H}^{*}(\mathcal{P}, \mathbb{Q}) = \mathbb{Q} \end{array}$$

commutes up to multiplication by an element of $H^*(TM, \mathbb{Q})$. In fact,

$$\operatorname{Ind}(D) = (-1)^n \int_{T^*M} \operatorname{ch}(\sigma_D) \operatorname{Td}(T_{\mathbb{C}}M)$$

<ロト <回 > < 回 > < 回 > .

크

- if dim(M) = 4k is spin then $\hat{A}(M) = \operatorname{ind}(Dirac) \in \mathbb{Z}$
- if *M* is oriented then $sign(M) = ind(d + d^*)$ (index of the signature operator).
- Index theorems for foliations, singular spaces, etc. use K-theory of operator algebras

・ロト ・四ト ・ヨト ・ヨト

크

e.g. in topology : vector field problem on a sphere (Adams, 1962).

If $n = 2^c 16^d u$ (u odd, $0 \le c \le 3$), then the maximal number of linearly independent continuous tangent vector fields on S^{n-1} is $2^c + 8d$.

A (B) > A (B) > A (B) >

Some generalizations of complex *K*-theory

크

If G is a compact group acting on M, the whole theory is unchanged. Use vector bundles with an action of G.

 $K_G(pt) = R(G)$

(ring of representations of G).

If *G* is not compact, the above definition is not appropriate $(KK_G$ -theory is more adequate).

Let A be a unital algebra.

Definition An *A*-module *E* is finitely generated projective if $\exists E', \exists n, E \oplus E' \cong A^n$.

Theorem

(Swan) If M is compact and $E \rightarrow M$ is a vector bundle then C(M, E) is a finitely generated projective over C(M).

 $(\exists E', E \oplus E' \text{ trivial}).$

More precisely, there is an equivalence of categories between vector bundles over E and f.g.p. modules over C(M).

Definition

$$\mathcal{K}(A) = \frac{\{[E] - [F] \mid E, F \text{ f.g.p. modules over } A\}}{\sim}$$

$$[E] - [F] \sim [E'] - [F']$$
 if $\exists G, E \oplus F' \oplus G \cong E' \oplus F \oplus G$.

Then $K(M) \cong K(C(M))$. Remark : one may assume $F = A^n$ for some *n*.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

A f.g.p. is the image of a projection $p \in M_n(A)$ for some *n*.

Definition

p and *p'* are similar if $\exists u \in GL(n, A)$, $p' = upu^{-1}$.

Definition

$$\mathcal{K}(A) = \frac{\{[p] - [q] \mid p, q \text{ projection in some } M_n(A)\}}{\sim}$$
$$p] - [q] \sim [p'] - [q'] \text{ if } \exists r, p \oplus q' \oplus r \text{ and } p' \oplus q \oplus r \text{ similar.}$$

This definition agrees with the one using projective modules.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

 $K^{-n}(A) = \pi_{n-1}(GL_{\infty}(A)).$ For instance, $K^{-1}(pt)$ corresponds to $\{[E] - n \mid rk(E) = n\}$ where *E* is a vector bundle over $S^1 = \mathbb{R}/\mathbb{Z}$. The bundle *E* is trivial over [0, 1). The identification $E_0 \cong E_1$ comes from an element $u \in GL_n(A)$. Thus, $K^{-1}(A) = \pi_0(GL_{\infty}(A)).$

Use real vector bundles instead of complex vector bundles. The theory is 8-periodic.

N.B. *KO*-theory \neq Real *K*-theory.

Example :
$$K^{-n}(pt) = \mathbb{Z}, 0, \mathbb{Z}, 0, ...$$

 $KO^{-n}(pt) = \mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, 0, \mathbb{Z}, 0, 0, 0, ...$
For instance, $KO^{-1}(pt) = \pi_0(GL_{\infty}(\mathbb{R})) = \mathbb{Z}/2$.
 $KO^{-2}(pt) = \lim_n \pi_1(SO(n)) = \mathbb{Z}/2$.

< D > < B > < E > < E</p>

Definition

A Real space is a space endowed with an involution $\tau : X \to X$.

We write $\bar{x} = \tau(x)$ for simplicity. Examples : $\mathbb{R}^{p,q} = \mathbb{R}^q \oplus i\mathbb{R}^p$ with complex conjugation. $\mathbb{R}^{1,1} \cong \mathbb{C}$.

 $P_n(\mathbb{C})$ with complex conjugation.

Definition

Real vector bundle : $E_x \to E_{\bar{x}}$ involution which is antilinear on each fiber.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A Real group is a group which is a Real space such that $\bar{gh} = \bar{g}\bar{h}$.

Actions of Real groups on Real spaces will satisfy $\overline{g \cdot x} = \overline{g} \cdot \overline{x}$ for all $(g, x) \in G \times X$.

・ロト ・ 同 ト ・ 国 ト ・ 国 ト …

One defines *KR*-theory in the same way.

Definition

Let *M* be a Real compact manifold.

$$KR(M) = \frac{\{[E] - [F] \mid E, F \text{ Real vector bundles }\}}{\sim}$$

 $[E] - [F] \sim [E'] - [F']$ if $\exists G, E \oplus F' \oplus G \cong E' \oplus F \oplus G$. (Can add an action of a Real group in the definition to get $KR_G(M)$.)

イロト イポト イヨト イヨト 二日

Definition

A Real algebra is a pair (A, τ) where A is a complex algebra, and $\tau : A \rightarrow A$ is an antilinear involution.

e.g. A = C(M) where *M* is a Real space.

A is $\mathbb{Z}/2\mathbb{Z}$ -graded if $A = A^0 \oplus A^1$ with $A^i \cdot A^j \subset A^{i+j}$. Tensor products of graded algebras : $A \otimes B$ is endowed with the product

$$(a \otimes b)(a' \otimes b') = (-1)^{|b| |a'|} aa' \otimes bb'.$$

The definition of KR(A) is like the one of K(A) if A is not $\mathbb{Z}/2\mathbb{Z}$ -graded.

Let $X_{\mathbb{R}} = \{x \in X \mid \overline{x} = x\}$. Restriction of Real vector bundles to $X_{\mathbb{R}}$ are complexifications of real vector bundles over $X_{\mathbb{R}}$, thus there is a map

$$\mathit{KR}(X) \to \mathit{KR}(X_{\mathbb{R}}) \cong \mathit{KO}(X_{\mathbb{R}}).$$

In particular, if τ is trivial then $KR(X) = KO(X_{\mathbb{R}})$.

Let $S^{p,q}$ be the unit sphere in $\mathbb{R}^{p,q}$. $S^{1,0}$ consists of two conjugate points. Let X be a space (without involution). $X \times S^{1,0}$ consists of two copies of X which are conjugate.

 $KR(X \times S^{1,0}) \cong K(X).$

Let $X = P(\mathbb{C}^n)$ (the space of complex lines in \mathbb{C}^n) with involution=complex conjugation. The Hopf bundle *H* is defined by $H_x = x$. For n = 2, $X \cong S^{1,1}$ and $[H] - 1 \in KR(\mathbb{R}^{1,1})$ is a generator.

Basic properties

- Homotopy invariance : if $f_t : X \to Y$ (continuous, involution preserving) then $f_0^* = f_1^* : KR(Y) \to KR(X)$.
- Higher *KR*-theory groups : $KR^{-p,-q}(X) = KR(X \times \mathbb{R}^{p,q})$.
- $KR^{p+r,q+r}(X) \cong KR^{p,q}(X)$. Denote this group by $KR^{p-q}(X)$.
- Bott periodicity : $KR^{n+8}(X) \cong KR^n(X)$.
- Exactness : if Y is closed in X then

$$\cdots KR^{n-1}(X) \to KR^{n-1}(Y) \to KR^n(X \setminus Y)$$
$$\to KR^n(X) \to KR^n(Y) \to \cdots$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○○

is exact.

For X, Y compact,

$$\mathit{KR}(X) \otimes \mathit{KR}(Y) \to \mathit{KR}(X \times Y)$$

is defined by $[E] \otimes [F] \mapsto [E \times F]$. This extends to

$$\mathit{KR}^{p,q}(X)\otimes \mathit{KR}^{p',q'}(Y) \to \mathit{KR}^{p+p',q+q'}(X \times Y).$$

This is still valid for X, Y noncompact (recall $KR(X) \subset KR(\tilde{X})$).

(日)

Recall $K^{-n}(pt) = \mathbb{Z}, 0, \mathbb{Z}, 0, \dots$ Denote by $\mu_2 = [H] - [1]$ the Bott generator, then μ_2^k generates $K^{2k}(pt)$.

 $KR^{-n}(pt) = KO^{-n}(pt) = \mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, 0, \mathbb{Z}, 0, 0, 0, \dots$ Let $\eta_1 = [L] - [1]$ where [L] is the Möbius band. Then η_1 and η_1^2 are $\neq 0$. $\eta_4^2 = 4$.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

$$c: KR(X) \to K(X)$$

is the forgetful functor (forget the involution).

Particular case : if $X = X_{\mathbb{R}}$ then

$$c: \mathcal{KO}(X) \to \mathcal{K}(X), \qquad [E] \mapsto [E \otimes_{\mathbb{R}} \mathbb{C}].$$

・ロト ・四ト ・ヨト ・ヨト

æ

$$r \colon K(X) \to KR(X)$$

 $[E] \mapsto [E \otimes \tau^* \overline{E}]$

where $(\tau^* \overline{E})_x = \overline{E_{\overline{x}}}$. The Real structure on $E \otimes \tau^* \overline{E}$ is $\tau(\xi_x, \overline{\eta_{\overline{x}}}) = (\eta_{\overline{x}}, \overline{\xi_x})$.

<ロト <部 > < E > < E > < E > <

크

$$\mathit{cr}(lpha) = lpha + lpha^*$$

where $*: \mathit{K}(X)
ightarrow \mathit{K}(X), \, [\mathit{E}] \mapsto [au^* ar{\mathit{E}}].$
 $\mathit{rc}(lpha) = 2lpha$

because of the isomorphism

$$\begin{array}{rcl} E_{x} \oplus E_{x} & \to & E_{x} \oplus \overline{E_{\bar{x}}} \\ (\xi,\eta) & \mapsto & (\xi + i\eta, \bar{\xi} - i\bar{\eta}). \end{array}$$

▲ロト▲御ト▲恵ト▲恵ト 恵 めんぐ

$$\begin{split} & \mathcal{KO}(X) \underset{r}{\overset{c}{\leftarrow}} \mathcal{K}(X).\\ & c(\mathcal{KO}(X)) \subset \{ \alpha \in \mathcal{K}(X) \mid \alpha^* = \alpha \} =: \mathcal{K}(X)^0.\\ & \mathcal{KO}(X) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{2}] \cong \mathcal{K}(X)^0 \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{2}]. \end{split}$$

IECL, UMR 7502 du CNRS KR-theory

$$c([1]) = 1, c(\eta_1) = c(\eta_1^2) = 0, c(\eta_4) = 2\mu_2^2,$$

 $r([1]) = [2], r(\mu_2) = \eta_1^2, r(\mu_2^2) = \eta_4.$

▲ロ ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Let *Q* be a quadratic form on an \mathbb{R} -vector space *V*. The Clifford algebra of (*V*, *Q*) is the quotient of the free algebra over *V* by the relations

$$v \cdot v = Q(v).$$

For instance, if Q = 0 then $\text{Cliff}(V, Q) = \Lambda V$ has dimension 2^n . If V has a Q-orthogonal basis (e_1, \ldots, e_n) , then Cliff(V, Q) has basis

$$(e_{i_1}e_{i_2}\cdots e_{i_k})_{1\leqslant i_1\leqslant i_1\leqslant \cdots \leqslant n}$$

Products can be computed by $e_i^2 = Q(e_i)\mathbf{1}$ and $e_ie_j + e_je_i = 0$ if $i \neq j$. dim(Cliff(V, Q)) = 2ⁿ but Cliff(V, Q) $\ncong \wedge V$. Cliff(V, Q) is $\mathbb{Z}/2\mathbb{Z}$ -graded.

(日)

Consider $Q(x_1, \ldots, x_q, x_{q+1}, \ldots, x_{q+p}) = x_1^2 + \cdots + x_q^2 - (x_{q+1}^2 + \cdots + x_{q+p}^2)$ the quadratic form of signature (q, p) on \mathbb{R}^{p+q} . Denote by $C^{p,q}$ its Clifford algebra. $C^{p,0} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{H} \oplus \mathbb{H},$ $M_2(\mathbb{H}), M_4(\mathbb{C}), M_8(\mathbb{R}), M_8(\mathbb{R}) \oplus M_8(\mathbb{R}), M_{16}(\mathbb{R}), \ldots$ $C^{0,q} = \mathbb{R}, \mathbb{R} \oplus \mathbb{R}, M_2(\mathbb{R}), M_2(\mathbb{C}), M_2(\mathbb{H}),$ $M_2(\mathbb{H}) \oplus M_2(\mathbb{H}), M_4(\mathbb{H}), M_8(\mathbb{C}), M_{16}(\mathbb{R}), \ldots$ Using $C^{p,q} \hat{\otimes} C^{p',q'} \cong C^{p+p',q+q'}$, one can compute $C^{p,q}$ for all

Using $C^{p,q} \otimes C^{p,q} \cong C^{p+p,q+q}$, one can compute $C^{p,q}$ for a p, q.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○○

Let $A = A^0 \oplus A^1$ be a Real $\mathbb{Z}/2\mathbb{Z}$ -graded algebra.

A Real, $\mathbb{Z}/2\mathbb{Z}$ -graded module over *A* is an *A* module of the form $E = E^0 \oplus E^1$, endowed with an antilinear involution τ , such that

- $E^i \cdot A^j \subseteq E^{i+j}$;
- $\tau(\xi a) = \tau(\xi)\tau(a)$ for all $(\xi, a) \in E \times A$.

A (B) > A (B) > A (B) >

The algebra End(E) is again $\mathbb{Z}/2$ -graded and Real :

• $\deg(T) = 1$ if $\deg(T(\xi)) = \deg(\xi) + 1 \pmod{2}$ for all $\xi \in E$;

•
$$\overline{T}(\xi) = \overline{T(\overline{\xi})}.$$

The (graded) *KR*-theory of *A* is the set of graded, Real *A*-modules modulo degenerate ones.

Degenerate means : $\exists T \in End_A(E), T^2 = Id, deg(T) = 1, T = \overline{T}.$

・ロト ・四ト ・ヨト ・ヨト

This is coherent with the def for ungraded algebras

$[E] = [E^0 \oplus E^1]$ graded $\longrightarrow [E^0] - [E^1]$.

(日)

크

$$C^{0,1} = \langle 1, \varepsilon \rangle$$
 with $\varepsilon^2 = 1$, ϵ of degree 1.
If $E = E^0 \oplus E^1$ is a graded $C^{0,1}$ -module, then $\varepsilon : E^0 \xrightarrow{\cong} E^1$. We can assume $E = E^0 \oplus E^0$ and

$$\varepsilon = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Take $T = \varepsilon \implies E$ is degenerate.

$$C^{1,0} = \langle 1, e \rangle$$
 with $e^2 = -1$, *e* of degree 1.
If $E = E^0 \oplus E^1$ is a graded $C^{1,0}$ -module, then $e : E^0 \xrightarrow{\cong} E^1$. We can assume $E = E^0 \oplus E^0$ and

$$e = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

If $T = \begin{pmatrix} 0 & S^{-1} \\ S & 0 \end{pmatrix}$ is an endomorphism of *E*, it commutes with *e* so $S^2 = -1$. Possible iff dim(E^0) is even.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

 $KO(C^{2,0}) = \mathbb{Z}/2\mathbb{Z}$

 $C^{2,0} = \langle 1, e_1, e_1, e_1, e_2 \rangle$ with $e_1^2 = e_2^2 = -1$, $e_1e_2 = -e_2e_1$, e_j of degree 1, i.e. $C^{2,0} \cong \mathbb{H}$. Identify \mathbb{C} with $\langle 1, e_1e_2 \rangle$. If $E = E^0 \oplus E^1$ is a graded $C^{2,0}$ -module, then E^j are \mathbb{C} -vector spaces and $e_1 : E^0 \xrightarrow{\cong} E^1$. We can assume $E = E^0 \oplus E^0$ and

$$e_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

If $T = \begin{pmatrix} 0 & S^{-1} \\ S & 0 \end{pmatrix}$ is an endomorphism of *E*, then *S* is antilinear and $S^2 = -\text{Id}$. Possible iff dim(E^0) is even.

(本部) (本語) (本語) (注語)

 $\overline{KO(C^{4,0})} = \mathbb{Z}$

$$C^{4,0} \cong C^{0,4} \cong M_2(\mathbb{H})$$

graded by deg $\begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} = 0$, deg $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix} = 1$.
In general $K(M_n(A)) \cong K(A)$, so
 $KO(C^{4,0}) = KO(C^{0,4}) = KO(\mathbb{H}) = \mathbb{Z}.$

The generator is $[\mathbb{H}]$ (\mathbb{H} is a module over itself).

$\operatorname{Cliff}(V) \hat{\otimes} \operatorname{Cliff}(-V) \cong \mathcal{L}(\Lambda^* V).$

Thus $C^{p,p} \cong M_{2^p}(\mathbb{R})$.

IECL, UMR 7502 du CNRS KR-theory

$$KR^{p,q}(A) \cong KR(A \hat{\otimes} C^{p,q}).$$

 $\eta_1 = [C^{1,0}] \in KO(C^{1,0}) \cong KR^{1,0}(pt) \ (C^{1,0} \text{ is a module over itself}).$ $\eta_2 = [C^{2,0}] \in KO(C^{2,0}) \cong KR^{2,0}(pt).$

 $\eta_4 = [\mathbb{H}^2] \in KO(M_2(\mathbb{H})) \cong KO(C^{4,0}) \cong KR^{4,0}(pt).$ If this is granted, then $KR^{p,q}(A) \cong KR^{p+r,q+r}(A) = K^{p-q}(A)$ and $KR^{p+8}(A) \cong KR^p(A).$

<ロ > < 団 > < 団 > < 豆 > < 豆 > -

 $\eta_4 = [\mathbb{H}]$ as an \mathbb{H} -module. $\mathbb{H} \otimes \mathbb{C} \cong M_2(\mathbb{C})$ because

$$\mathbb{H}=\{egin{pmatrix} a & -ar{b}\ b & ar{a} \end{pmatrix}\mid a,b\in\mathbb{C}\},$$

and $M_2(\mathbb{C}) = \mathbb{H} \oplus i\mathbb{H}$.

As a $M_2(\mathbb{C})$ -module, $[M_2(\mathbb{C})] = 2[\mathbb{C}^2]$.

イロト イポト イヨト イヨト 二日

$\mathbb{H} \otimes \mathbb{H} \cong M_4(\mathbb{R}),$

which is isomorphic to $4[\mathbb{R}^4]$ as a $M_4(\mathbb{R})$ -module.

<ロ> <同> <同> < 同> < 同> < 同> <

Ξ.

$KR^{n-4}(X)$ and $KR^n(X)$

Composition of multiplications by η_4

$$\mathit{KR}^n(X)
ightarrow \mathit{KR}^{n-4}(X)
ightarrow \mathit{KR}^{n-8}(X) \cong \mathit{KR}^n(X)$$

is 4 ld, thus

$$KR^n(X)\otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{2}]\cong KR^{n-4}(X)\otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{2}].$$

Remark : $KR^{-4}(X) = KR(C(X, \mathbb{H})_{\mathbb{C}})$ is quaternionic *K*-theory. A quaternionic vector bundle on (X, τ) is a complex vector bundle $E \to X$ together with a conjugate linear map $J : E \to E$ commuting with the Real structure on *X*, such that $J^2 = -Id$.

<ロ> <同> <同> < 同> < 同> < 同> < □> <

This group cannot always be identified with a "known" *K*-theory group but can be computed by means of a Gysin-type exact sequence.

$$\cdots \to {\it KR}^{
ho-q}(X) \stackrel{\eta^{
ho.}}{\to} {\it KR}^{-q}(X) \stackrel{p^*_1}{\to} {\it KR}^{-q}(X imes {\it S}^{
ho,0}) \to \cdots$$

イロト イ理ト イヨト イヨト

크

Recall $KR(X \times S^{1,0}) \cong K(X)$. $KR(X \times S^{2,0}) = KSC(X)$ (self-conjugate *K*-theory) is the Grothendieck group of homotopy classes of self-conjugate bundles over *X*.

(A self-conjugate bundle over (X, τ) is a complex vector bundle $E \to X$ together with an isomorphism $\alpha \colon E \to \overline{\tau^* E}$.)

For $p \ge 3$, using $\eta_1^3 = 0$ we have an exact sequence

$$0 o {\it KR}^{-q}(X) \stackrel{p_1^*}{ o} {\it KR}^{-q}(X imes {\it S}^{p,0}) o {\it KR}^{p+1-q}(X) o 0$$

(日)

If $\pi : Y \to X$ is a Real fibration, $E \to Y$ a Real vector bundle and $D = (D_x)_{x \in X}$ is a family of Real, elliptic differential operators, one can construct an index

 $\operatorname{Ind}(D) \in KR(X).$

Elliptic operators on a manifold provide Fredholm operators on a Hilbert space. Hence, *K*-theory elements are often conveniently described in terms of Fredholm operators.

(*T* is Fredholm $\iff \exists S, TS - \text{Id and } ST - \text{Id are of finite rank,} \\ \iff \exists S' TS' \text{ and } S'T \text{ are compact, } \iff \text{ker } T \text{ and coker}(T) \\ \text{are finite dimensional.}) \\ \text{Example : } = (\text{Fred}) \approx K(\text{at) given by } T \mapsto [\text{ker } T] = [\text{coker}(T)]$

Example : $\pi_0(\text{Fred}) \cong K(pt)$ given by $T \mapsto [\text{ker } T] - [\text{coker}(T)]$. The composition

 $\mathsf{Fred} \to \mathsf{K}(\mathsf{pt}) \stackrel{\cong}{\to} \mathbb{Z}$

< 日 > < 回 > < 回 > < 回 > < 回 > <

is $T \mapsto \operatorname{ind}(T)$.

More generally, one can show that for X compact, K(X) = [X, Fred].

K(X) is the Grothendieck group of homotopy classes of families $D = (D_X)_{X \in X}$ of self-adjoint, degree 1 Fredholm operators.

$$D_{x}=egin{pmatrix} 0 & T_{x}^{*}\ T_{x} & 0 \end{pmatrix}.$$

(If X is locally compact and not compact, one needs to add a condition of vanishing at infinity.)

<ロ> <同> <同> <同> < 同> < 同> < 同> < 同>

- No need of one-point compactifications
- Easily extends to $(\mathbb{Z}/2\mathbb{Z}$ -graded) Clifford bundles
- The external product K(X) × K(Y) → K(X × Y) is described by [D] · [D'] = [D^ô(1 + 1^ô(D')].

イロト イ理ト イヨト イヨト

크

The Bott element

Let (V, Q) be a (real) quadratic space. Let $A = C_0(V, \text{Cliff}(V, Q))$. Then

$$\mathit{KO}(\mathit{A}) = \langle [\beta]
angle \cong \mathbb{Z}$$

where $[\beta]$ is the "Bott element" :

$$\beta_{\mathbf{v}} = \text{Clifford multiplication by } \frac{\mathbf{v}}{\sqrt{1 + ||\mathbf{v}||^2}}.$$

Note that β is indeed of degree 1, that $1 - \beta_v^2 = \frac{1}{1 + ||v||^2}$ tends to 0 as $||v|| \to \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

For $V = \mathbb{R}^{p,q}$, this gives

$$KR(X) \cong KR(C_0(X \times \mathbb{R}^{p,q}, C^{p,q})_{\mathbb{C}}).$$

More generally, if $\pi: V \to X$ is a Real vector bundle, there is a Thom isomorphism

$$KR^n(X) \cong KR^n(C_0(V, \pi^*\mathrm{Cliff}(V)_{\mathbb{C}})).$$

If there exists a spin structure on *V*, then $KR^n(X) \cong KR^n(V)$. Otherwise, KR(X) is a twisted *K*-theory group of *V*.

(日本) (日本) (日本)

A few references

- (On complex *K*-theory and index theory) Atiyah and Singer, *The index of elliptic operators* I, II, III,...
- Atiyah, *K*-theory and reality.
- Karoubi, K-theory, an introduction.
- Seymour, The Real K-theory of Lie groups and homogeneous spaces.
- (Not on Real K-theory) Karoubi, Twisted K-theory, old and new.

- (For operator algebraists :) Kasparov, *The operator K-functor and extensions of C*-algebras*
- (For operator algebraists :) Moutuou, PhD thesis.