Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Journes de Physique Mathmathique Lyon Topological Insulators September 11-13, 2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bulk-edge duality for topological insulators

Gian Michele Graf ETH Zurich

Journes de Physique Mathmathique Lyon Topological Insulators September 11-13, 2013

> joint work with Marcello Porta thanks to Yosi Avron

> > < □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction

Rueda de casino

Hamiltonians

Indices

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy

Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy

(ロ) (同) (三) (三) (三) (○) (○)

Time-reversal invariant fermionic system

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance. Analogy: torus ≠ sphere (differ by genus).

- Insulator in the Bulk: Excitation gap
 For independent electrons: band gap at Fermi energy
- Time-reversal invariant fermionic system

► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance. Analogy: torus ≠ sphere (differ by genus).

Contributors to the field: Kane, Mele, Zhang, Moore; Fröhlich

$$\mu_+ > \mu_-$$

Θ time-reversal

・ロン ・四 と ・ ヨ と ・ ヨ と

€ 990

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• On the two edges (net): parallel charge currents, anti-parallel spin currents

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

if V is time-reversal invariant.

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

if *V* is time-reversal invariant. Indeed:

$$\langle \Theta \psi, V \psi \rangle =$$

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

if V is time-reversal invariant. Indeed: by Θ anti-unitary,

$$\langle \Theta \psi, V \psi \rangle = \langle \Theta V \psi, \Theta^2 \psi \rangle =$$

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

if V is time-reversal invariant. Indeed: by Θ anti-unitary, $\Theta^2 = -1$, $[\Theta, V] = 0$,

$$\langle \Theta \psi, V \psi \rangle = \langle \Theta V \psi, \Theta^2 \psi \rangle = - \langle V \Theta \psi, \psi \rangle =$$

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

if V is time-reversal invariant. Indeed: by Θ anti-unitary, $\Theta^2 = -1$, $[\Theta, V] = 0$, $V = V^*$

$$\langle \Theta \psi, \mathbf{V} \psi \rangle = \langle \Theta \mathbf{V} \psi, \Theta^2 \psi \rangle = - \langle \mathbf{V} \Theta \psi, \psi \rangle = - \langle \Theta \psi, \mathbf{V} \psi \rangle$$

• On the two edges (net): parallel charge currents, anti-parallel spin currents

- Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

- if V is time-reversal invariant.
- Backscattering to other edge suppressed by separation

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

- if V is time-reversal invariant.
- Backscattering to other edge suppressed by separation
- Autobahn principle (Zhang);

• On the two edges (net): parallel charge currents, anti-parallel spin currents

 \bullet Stable against backscattering, $|\psi\rangle \to \Theta |\psi\rangle,$ induced by disorder

$$\langle \Theta \psi | V | \psi
angle = 0$$

- if V is time-reversal invariant.
- Backscattering to other edge suppressed by separation
- Autobahn principle (Zhang); U.S. patent 20120138887

Deformation as interpolation in physical space:

 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Deformation as interpolation in physical space:

 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ordinary insulator ~ void: Edge states

Deformation as interpolation in physical space:

 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

- Ordinary insulator ~ void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~ void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

In a nutshell: Termination of bulk of a topological insulator implies edge states

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

(日) (日) (日) (日) (日) (日) (日)

In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

 Express that property as an Index relating to the Bulk, resp. to the Edge.

(日) (日) (日) (日) (日) (日) (日)

In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree?

Bulk-edge correspondence. Done?

In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Yes, e.g. Kane and Mele.
- Bulk-edge duality: Can it be shown that the two indices agree? Schulz-Baldes et al.; Essin & Gurarie

Bulk-edge correspondence. Today

In a nutshell: Termination of bulk of a topological insulator implies edge states

 State the (intrinsic) topological property distinguishing different classes of insulators.

- Express that property as an Index relating to the Bulk, resp. to the Edge. Done differently.
- Bulk-edge duality: Can it be shown that the two indices agree? Done differently.

Introduction

Rueda de casino

Hamiltonians

Indices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Rueda de casino. Time 0'15"

Rueda de casino. Time 0'44"

(日)

Rueda de casino. Time 0'44.25"

(日)

Rueda de casino. Time 0'44.50"

(日)

Rueda de casino. Time 0'44.75"

Rueda de casino. Time 0'45"

Rueda de casino. Time 0'45.25"

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Rueda de casino. Time 0'45.50"

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Rueda de casino. Time 3'23"

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト ● のへで

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- are free in between
- must never step on center of the floor

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- are free in between
- must never step on center of the floor
- are unlabeled points

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

There are dances which can not be deformed into one another.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Which is the index that makes the difference?

A snapshot of the dance

A snapshot of the dance

Dance D as a whole

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A snapshot of the dance

Dance D as a whole

A snapshot of the dance

Dance D as a whole

A snapshot of the dance

Dance D as a whole

 $\mathcal{I}(D)$ = parity of number of crossings of fiducial line

Introduction

Rueda de casino

Hamiltonians

Indices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

translation invariant in the vertical direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

translation invariant in the vertical direction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

period may be assumed to be 1:

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f.

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...)

(ロ) (同) (三) (三) (三) (○) (○)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N

(ロ) (同) (三) (三) (三) (○) (○)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

(ロ) (同) (三) (三) (三) (○) (○)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\boldsymbol{H}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

with

 $V_n(k) = V_n(k)^* \in M_N(\mathbb{C})$ (potential) $A(k) \in GL(N)$ (hopping)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)

- translation invariant in the vertical direction
- period may be assumed to be 1: sites within a period as labels of internal d.o.f., along with others (spin, ...), totalling N
- ▶ Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$

End up with wave-functions $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$ and Bulk Hamiltonian

$$\left(\boldsymbol{H}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

with

 $V_n(k) = V_n(k)^* \in M_N(\mathbb{C})$ (potential) $A(k) \in GL(N)$ (hopping): Schrödinger eq. is the 2nd order difference equation

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

(オロトオ間トオミトオミト ヨー ろんの

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(k)\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(k)\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(k)^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(k)\boldsymbol{\psi}_{n}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}\right)_{n} = \boldsymbol{A}(\boldsymbol{k})\boldsymbol{\psi}_{n-1} + \boldsymbol{A}(\boldsymbol{k})^{*}\boldsymbol{\psi}_{n+1} + \boldsymbol{V}_{n}^{\sharp}(\boldsymbol{k})\boldsymbol{\psi}_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

A D F A 同 F A E F A E F A Q A

▶ has Dirichlet boundary conditions: for n = 1 set $\psi_0 = 0$

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$

► translation invariant as before (hence Bloch reduction) Wave-functions $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$ and Edge Hamiltonian

$$\left(\boldsymbol{H}^{\sharp}(k)\psi\right)_{n} = \boldsymbol{A}(k)\psi_{n-1} + \boldsymbol{A}(k)^{*}\psi_{n+1} + \boldsymbol{V}_{n}^{\sharp}(k)\psi_{n}$$

which

 agrees with Bulk Hamiltonian outside of collar near edge (width n₀)

$$V_n^{\sharp}(k) = V_n(k) , \qquad (n > n_0)$$

▶ has Dirichlet boundary conditions: for n = 1 set $\psi_0 = 0$ Note: $\sigma_{\text{ess}}(H^{\sharp}(k)) \subset \sigma_{\text{ess}}(H(k))$, but typically $\sigma_{\text{disc}}(H^{\sharp}(k)) \not\subset \sigma_{\text{disc}}(H(k))$

Graphene as an example

Hamiltonian is nearest neighbor hopping on honeycomb lattice

(a) zigzag, resp. (b) armchair boundaries

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Dimers (N = 2).

Graphene as an example

Hamiltonian is nearest neighbor hopping on honeycomb lattice

(a) zigzag, resp. (b) armchair boundaries

Dimers (N = 2). For (b):

$$\psi_n = \begin{pmatrix} \psi_n^A \\ \psi_n^B \end{pmatrix} \in \mathbb{C}^{N=2} , \quad A(k) = -t \begin{pmatrix} 0 & 1 \\ e^{ik} & 0 \end{pmatrix} , \quad V_n(k) = -t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

For (a): too, but $A(k) \notin GL(N)$ Also: Extensions with spin, spin orbit coupling leading to topological insulators (Kane & Mele)

General assumptions

• Gap assumption: Fermi energy μ lies in a gap for all $k \in S^1$:

 $\mu\notin\sigma(H(k))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

General assumptions

• Gap assumption: Fermi energy μ lies in a gap for all $k \in S^1$:

$$\mu \notin \sigma(H(k))$$

- Fermionic time-reversal symmetry: $\Theta : \mathbb{C}^N \to \mathbb{C}^N$
 - Θ is anti-unitary and $\Theta^2 = -1$;
 - For all $k \in S^1$,

$$H(-k) = \Theta H(k) \Theta^{-1}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where Θ also denotes the map induced on $\ell^2(\mathbb{Z}; \mathbb{C}^N)$. Likewise for $H^{\sharp}(k)$ Elementary consequences of $H(-k) = \Theta H(k) \Theta^{-1}$ • $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.

• Time-reversal invariant points, k = -k,

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- Time-reversal invariant points, k = -k, at $k = 0, \pi$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ► Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Hence any eigenvalue is even degenerate (Kramers).

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- ► Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers). Indeed

$$H\psi = E\psi \implies H(\Theta\psi) = E(\Theta\psi)$$

and $\Theta \psi = \lambda \psi$, ($\lambda \in \mathbb{C}$) is impossible:

$$-\psi = \Theta^2 \psi = \bar{\lambda} \Theta \psi = \bar{\lambda} \lambda \psi \qquad (\Rightarrow \Leftarrow)$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ
Elementary consequences of $H(-k) = \Theta H(k) \Theta^{-1}$

- $\sigma(H(k)) = \sigma(H(-k))$. Same for $H^{\sharp}(k)$.
- Time-reversal invariant points, k = -k, at $k = 0, \pi$. There

$$H = \Theta H \Theta^{-1}$$
 $(H = H(k) \text{ or } H^{\sharp}(k))$

Hence any eigenvalue is even degenerate (Kramers).

Bands, Fermi line (one half fat), edge states

Introduction

Rueda de casino

Hamiltonians

Indices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on $-\pi \leq k \leq 0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bands, Fermi line, edge states

Definition: Edge Index

 $\mathcal{I}^{\sharp} =$ parity of number of eigenvalue crossings

The edge index

The spectrum of $H^{\sharp}(k)$

symmetric on $-\pi \leq k \leq 0$

Bands, Fermi line, edge states

Definition: Edge Index

 \mathcal{I}^{\sharp} = parity of number of eigenvalue crossings

At fixed *k*, map gap to $S^1 \setminus \{1\}$ and bands to $1 \in S^1$: Edge Index is index of a rueda.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(as a 2nd order difference equation) has 2*N* solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2*N* solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

has

• dim $E_{z,k} = N$.

Towards the bulk index

Let $z \in \mathbb{C}$. The Schrödinger equation

$$(H(k)-z)\psi=0$$

(as a 2nd order difference equation) has 2*N* solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N$.

Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} = \{ \psi \mid \psi \text{ solution, } \psi_n \to 0, \ (n \to +\infty) \}$$

(ロ) (同) (三) (三) (三) (○) (○)

has

• dim $E_{z,k} = N$.

• $E_{\bar{z},-k} = \Theta E_{z,k}$

 $Loop \gamma$ and torus $\mathbb{I} = \gamma \times S$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I}=\mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined?

Loop γ and torus $\mathbb{T} = \gamma \times S^1$

Vector bundle *E* with base $\mathbb{T} \ni (z, k)$, fibers $E_{z,k}$, and involution Θ .

Theorem In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

Definition: Bulk Index

$$\mathcal{I} = \mathcal{I}(E)$$

What's behind the theorem? How is $\mathcal{I}(E)$ defined? Aside $\ldots_{\mathcal{B}}$

Time reversal invariant bundles (E, \mathbb{T}, Θ)

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆

$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

Time reversal invariant bundles (E, \mathbb{T}, Θ)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

• Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$

•
$$\Theta: E_{\varphi} \to E_{-\varphi}$$
, Θ antilinear with $\Theta^2 = -1$

Time reversal invariant bundles (E, \mathbb{T}, Θ)

$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

- Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $\Theta: E_{\varphi} \to E_{-\varphi}$, Θ antilinear with $\Theta^2 = -1$
- Frame bundle *F*(*E*) has fibers *F*(*E*)_φ ∋ *v* = (*v*₁,... *v*_N) consisting of bases *v* of *E*_φ.

Classification of time reversal invariant bundles Consider the cut torus:

Consider the cut torus:

Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Idea: At a time reversal invariant point, that means (N = 2)

$$v_2 = \Theta v_1$$
 $v_1 = -\Theta v_2$

Consider the cut torus:

Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(\varphi_2) = \mathbf{v}_-(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$

Consider the cut torus:

Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(\varphi_2) = \mathbf{v}_-(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$

Consider the cut torus:

Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(\varphi_2) = \mathbf{v}_-(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$

There exists a relation between $T(\varphi_2)$ and $T(-\varphi_2)$

Consider the cut torus:

Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

うつん 川 ・ ・ 川 ・ ・ 一 ・ うろう

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2) T(arphi_2) , \qquad (arphi_2 \in \mathcal{S}^1)$$

There exists a relation between $T(\varphi_2)$ and $T(-\varphi_2)$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

with $\Theta_0 = \varepsilon C$, (*C* complex conjugation on \mathbb{C}^N)

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \boldsymbol{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \boldsymbol{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

(日) (日) (日) (日) (日) (日) (日)

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$ (with equal multiplicities): $\Theta_0(T - \lambda) = T^{-1}(1 - \bar{\lambda}T)\Theta_0$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \mathcal{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

(日) (日) (日) (日) (日) (日) (日)

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$ (with equal multiplicities): $\Theta_0(T - \lambda) = T^{-1}(1 - \bar{\lambda}T)\Theta_0$

• Phases $\lambda/|\lambda|$ form a rueda for $0 \le \varphi_2 \le \pi$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \mathcal{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$ (with equal multiplicities): $\Theta_0(T - \lambda) = T^{-1}(1 - \bar{\lambda}T)\Theta_0$

• Phases $\lambda/|\lambda|$ form a rueda for $0 \le \varphi_2 \le \pi$

Definition: The Index of the bundle E is that of that rueda D

$$\mathcal{I}(E) := \mathcal{I}(D)$$

(日) (日) (日) (日) (日) (日) (日)

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \mathcal{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$ (with equal multiplicities): $\Theta_0(T - \lambda) = T^{-1}(1 - \bar{\lambda}T)\Theta_0$

• Phases $\lambda/|\lambda|$ form a rueda for $0 \le \varphi_2 \le \pi$

Definition: The Index of the bundle E is that of that rueda D

$$\mathcal{I}(E):=\mathcal{I}(D)$$

(日) (日) (日) (日) (日) (日) (日)

The statement of the theorem is now complete.

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \mathcal{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$ (with equal multiplicities): $\Theta_0(T - \lambda) = T^{-1}(1 - \bar{\lambda}T)\Theta_0$

• Phases $\lambda/|\lambda|$ form a rueda for $0 \le \varphi_2 \le \pi$

Definition: The Index of the bundle E is that of that rueda D

$$\mathcal{I}(E) := \mathcal{I}(D)$$

Side result: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

Remark: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in \mathcal{S}^1)$$

with $\Theta_0 = \varepsilon C$, hence $\Theta_0^2 = -1$.

- Only $0 \le \varphi_2 \le \pi$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$ (with equal multiplicities): $\Theta_0(T - \lambda) = T^{-1}(1 - \bar{\lambda}T)\Theta_0$

• Phases $\lambda/|\lambda|$ form a rueda for $0 \le \varphi_2 \le \pi$

Definition: The Index of the bundle E is that of that rueda D

$$\mathcal{I}(E) := \mathcal{I}(D)$$

Side result: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

Remark: $\mathcal{I}(E)$ agrees (in value) with the Pfaffian index of Kane and Mele.

... aside ends here.

Main result

Theorem Bulk and edge indices agree:

 $\mathcal{I}=\mathcal{I}^{\sharp}$

Main result

Theorem Bulk and edge indices agree:

 $\mathcal{I} = \mathcal{I}^{\sharp}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\mathcal{I} = +1$: ordinary insulator $\mathcal{I} = -1$: topological insulator

For this slide only: N = 1.

For this slide only: N = 1. Schrödinger (2nd order difference) equation on the half-line

$$(H^{\sharp} - z)\psi^{\sharp} = 0$$
 (no b.c. at $n = 0$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For this slide only: N = 1. Schrödinger (2nd order difference) equation on the half-line

$$(H^{\sharp} - z)\psi^{\sharp} = 0$$
 (no b.c. at $n = 0$)

with solution $\psi_n^{\sharp} \in \mathbb{C}$, (n = 0, 1, 2) decaying at $n \to \infty$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For this slide only: N = 1. Schrödinger (2nd order difference) equation on the half-line

• $\psi_0^{\#}$

$$(H^{\sharp}-z)\psi^{\sharp}=0$$
 (no b.c. at $n=0$)

with solution $\psi_n^{\sharp} \in \mathbb{C}$, (n = 0, 1, 2) decaying at $n \to \infty$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Solution is unique up to multiples

For this slide only: N = 1. Schrödinger (2nd order difference) equation on the half-line

• $\psi_0^{\#}$

$$(H^{\sharp}-z)\psi^{\sharp}=0$$
 (no b.c. at $n=0$)

with solution $\psi_n^{\sharp} \in \mathbb{C}$, (n = 0, 1, 2) decaying at $n \to \infty$

- Solution is unique up to multiples
- $\psi_0^{\sharp} = 1$ picks a unique solution,

For this slide only: N = 1. Schrödinger (2nd order difference) equation on the half-line

• $\psi_{0}^{\#}$

$$(H^{\sharp}-z)\psi^{\sharp}=0$$
 (no b.c. at $n=0$)

with solution $\psi_n^{\sharp} \in \mathbb{C}$, (n = 0, 1, 2) decaying at $n \to \infty$

- Solution is unique up to multiples
- $\psi_0^{\sharp} = 1$ picks a unique solution, except if n = 0 is a node
Proof of Theorem (sketch)

Fermi line (one half **fat**) edge states torus

- ▶ ψ , ψ^{\sharp} solutions (bulk, edge) at *z*, *k* decaying at *n* → +∞
- Bijective map $\psi \mapsto \psi^{\sharp}$, so that $\psi_n = \psi_n^{\sharp}$ ($n > n_0$)

$$\exists \psi^{\sharp} \neq \mathbf{0} \mid \psi_{n=0}^{\sharp} = \mathbf{0} \Leftrightarrow z \in \sigma(H^{\sharp}(k))$$

- ► There is a section of the frame bundle F(E), global on T, except at edge eigenvalue crossings
- Cut the torus along the Fermi line; let T(k) be the transition matrix
- There $T(k) = \mathbb{I}_N$, except near eigenvalue crossings
- As k traverses one of them, T(k) has eigenvalues 1 (multiplicity N-1) and $\lambda(k)$ making one turn of S^1

Proof of Theorem (sketch)

Fermi line (one half **fat**) edge states torus

- ▶ ψ , ψ^{\sharp} solutions (bulk, edge) at *z*, *k* decaying at *n* → +∞
- Bijective map $\psi \mapsto \psi^{\sharp}$, so that $\psi_n = \psi_n^{\sharp}$ ($n > n_0$)

$$\exists \psi \neq \mathbf{0} \mid \psi_{n=\mathbf{0}}^{\sharp} = \mathbf{0} \Leftrightarrow z \in \sigma(H^{\sharp}(k))$$

- ► There is a section of the frame bundle F(E), global on T, except at edge eigenvalue crossings
- Cut the torus along the Fermi line; let T(k) be the transition matrix
- There $T(k) = \mathbb{I}_N$, except near eigenvalue crossings
- As k traverses one of them, T(k) has eigenvalues 1 (multiplicity N-1) and $\lambda(k)$ making one turn of S^1

Proof of Theorem: Dual ruedas

Edge rueda: edge eigenvalues

Bulk rueda: eigenvalues of T(k)

イロト イポト イヨト イヨト

Proof of Theorem: Dual ruedas

Edge rueda: edge eigenvalues

Bulk rueda: eigenvalues of T(k)

・ロット (雪) (日) (日)

Ruedas share intersection points.

Proof of Theorem: Dual ruedas

Edge rueda: edge eigenvalues

Bulk rueda: eigenvalues of T(k)

・ロット (雪) (日) (日)

Ruedas share intersection points. Hence indices are equal \Box

Further results:

In case the Bulk Hamiltonian is doubly periodic:

Further results:

 In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Further results:

In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus and (*j*-th pair of) Bloch solutions as bundles *E_j*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Further results:

 In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus and (*j*-th pair of) Bloch solutions as bundles *E_j*. Then

$$\mathcal{I} = \prod_{j} \mathcal{I}(E_j)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

with product over filled pairs

Further results:

 In case the Bulk Hamiltonian is doubly periodic: Brillouin zone serves as torus and (*j*-th pair of) Bloch solutions as bundles *E_j*. Then

$$\mathcal{I} = \prod_j \mathcal{I}(E_j)$$

with product over filled pairs

- A direct link between indices of Bloch bundles and the edge index via Levinson's theorem.
- 3d topological insulators (weak and strong indices: 3+1)

Open questions:

No periodicity (disordered case)?

Summary

Bulk = Edge

$$\mathcal{I} = \mathcal{I}^{\sharp}$$

<ロ> <問> <問> < 回> < 回 > < 回 > < 回 > = 回