Topological Order in Insulators Pedestrian introduction *via* simple models

D. Carpentier, M. Fruchart, K. Gawędzki (Ecole Normale Supérieure de Lyon)

Journées de Physique Mathématique LYON 11 - 13 september 2013

Topological Order in Insulators

How do we describe bands in an insulator

Chern Topological Order (Quantum Hall Effect) on simple 2 bands models

Z₂ Topological Order

on simple 4 bands models

Purpose : illustrate topological orders as an obstruction using simple models

• Bloch wavefunctions $H\psi^{\alpha}_{\mathbf{k}} = E^{\alpha}_{\mathbf{k}} \ \psi^{\alpha}_{\mathbf{k}}$, $\psi^{\alpha}_{\mathbf{k}}(\mathbf{x}) = e^{i\mathbf{k}.\mathbf{x}}$. $\left(u^{\alpha}_{\mathbf{k}}(\mathbf{x}) \ e^{i\theta_{\mathbf{k}}}\right)$

• $E^{\alpha}_{\mathbf{k}}$ defines an energy band :

 E_k for each α p for each α p for each α k_x p p Brillouin Zone

 $\alpha = 1, \cdots, N$

Insulator : well defined ensemble of occupied bands

- Insulator : ground state characterized by ensemble of filled bands
- ensemble of filled bands (valence Bloch bundle) : well defined (robust) object

- Insulator : ground state characterized by ensemble of filled bands
- ensemble of filled bands (valence Bloch bundle) : well defined (robust) object

Topological properties of this 'valence Bloch bundle' ? (total ensemble of bands is always trivial)

Topological Insulator \Leftrightarrow non trivial topology of valence Bloch bundle

 $e^{i\theta_{\mathbf{k}}}|u_{\mathbf{k}}\rangle$

 $|u_{\mathbf{k}}\rangle$

Topological Order in Insulators

Chern Topological Order (Quantum Hall Effect) :

- breaking of time-reversal (e.g. Magnetic Field)
- ▶ no Spin (a single Chern number per band)
- ▶ only d=2
- Z₂ Topological Order :
 - ▶ spin dependent bands (S=1/2)
 - time reversal symmetry (e.g. spin-orbit interaction)
 - induced by strong spin-orbit (material property)
 - ▶ occurs in d=2 and d=3

Here : focus on bulk topological order

Thouless *et al.* (1982) Haldane (1985)

```
C.L.Kane and E.J.Mele PRL 95 (2005)
Fu, Kane et Mele, PRL 98 (2007)
Moore and Balents, PRB 75 (2007)
Roy, PRB 79 (2009)
Fu and Kane, PRB 76 (2007)
```


Main signature : robust Dirac surface states

Topology of bundles and Obstruction

• Simple Fiber bundle $S^1 \times [-1, 1]$

Twisted (Möbius strip)

Simple Bloch Bundle : Phase winding

Obstruction to a single phase convention

Topological Order in Insulators

Chern Topological Order (Quantum Hall Effect) :

- breaking of time-reversal (e.g. Magnetic Field)
- ▶ no Spin (a single Chern number per band)
- ▶ only d=2
- Z₂ Topological Order :
 - ▶ spin dependent bands (S=1/2)
 - time reversal symmetry (e.g. spin-orbit interaction)
 - induced by strong spin-orbit (material property)
 - ▶ occurs in d=2 and d=3

Thouless *et al.* (1982) Haldane (1985)

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane et Mele, PRL **98** (2007) Moore and Balents, PRB **75** (2007) Roy, PRB **79** (2009) Fu and Kane, PRB **76** (2007)

Purpose : illustrate topological orders as an obstruction using simple models

Thouless *et al.* (1982) Haldane (1985)

➡ Focus on (phase of) wave functions of the Filled Band of an Insulator

General Bloch Hamiltonian (Two Level System) :

$$H(\mathbf{k}) = \begin{pmatrix} h_0 + h_z & h_x - ih_y \\ h_x + ih_y & h_0 - h_z \end{pmatrix} = h_0(\mathbf{k})\mathbb{I} + \vec{h}(\mathbf{k}).\vec{\sigma}$$

➡ Focus on (phase of) wave functions of the Filled Band of an Insulator

General Bloch Hamiltonian (Two Level System) :

vendredi 13 septembre 13

Topology and Two Bands Model

1 Filled Flat Band

It is not possible to have a coherent phase convention for all points \vec{h} of the sphere

- if *h*(k) does not cover the whole sphere : single phase convention possible. «Standard trivial case»
- If $\vec{h}(\mathbf{k})$ spreads over the whole sphere : we need 2 independent phase conventions
- \clubsuit signals a topological property : the wavefunction phase winds by 2π around the sphere

Topology and Two Bands Model

1 Filled Flat Band

pological Index to detect non-triviality : Chern number
systicist like the Berry connection :
$$A = \frac{1}{i} \langle u_{-} | d u_{-} \rangle$$

erry curvature $F = dA$
set) Chern number : $C_1 = \frac{1}{2\pi} \int_{BZ} F$
easures the 'triviality' of the transition function :
 $C_1 = \frac{1}{2\pi} \int_{BZ} F$
 $= \frac{1}{2\pi} \left[\int_{h^{-1}(U_N)} F + \int_{h^{-1}(U_S)} F \right]$
ext $k = e^{i\phi(\mathbf{k})}$
 $= \frac{1}{2\pi} \left[\int_{\partial h^{-1}(U_N)} h^* A_N + \int_{\partial h^{-1}(U_S)} h^* A_S \right]$

and
$$A_N - A_S = d\varphi = \frac{1}{i}d\log(t_{NS})$$

 $\Rightarrow C_1 = 1$

Chern Topological Order : explicit model

Haldane (1985)

Topological Order in Insulators

Chern Topological Order (Quantum Hall Effect) :

breaking of time-reversal (e.g. Magnetic Field)

▶ no Spin (a single Chern number per band)

▶ only d=2

▶ Z₂ Topological Order :

- ▶ spin dependent bands (S=1/2)
- time reversal symmetry (e.g. spin-orbit interaction)
- induced by strong spin-orbit (material property)
- occurs in d=2 and d=3

Thouless *et al.* (1982) Haldane (1985)

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane et Mele, PRL **98** (2007) Moore and Balents, PRB **75** (2007) Roy, PRB **79** (2009) Fu and Kane, PRB **76** (2007)

Purpose : illustrate topological orders as an obstruction using simple models

Property of Time Reversal in Quantum Mechanics (for spin 1/2) :

- ► action **T** : **k** → -**k** ; σ → - σ $(T = e^{\frac{i}{\hbar}\pi S_y} K)$
- ► **T²=-I** (rotation by 2π of spin $\frac{1}{2}$)
- Kramers degeneracy : if $|u\rangle$ is an eigenstate of H, then T $|u\rangle$ is a

distinct eigenstate with same energy

Property of Time Reversal in Quantum Mechanics (for spin 1/2) :

- ► action **T** : $\mathbf{k} \rightarrow -\mathbf{k}$; $\sigma \rightarrow -\sigma$ $(T = e^{\frac{i}{\hbar}\pi S_y} K)$
- ► **T²=-I** (rotation by 2π of spin $\frac{1}{2}$)
- Kramers degeneracy : if $|u\rangle$ is an eigenstate of H, then T $|u\rangle$ is a

distinct eigenstate with same energy

Application to bands in a crystal : Time reversal symmetry

Relates spectrum at k and -k

Property of Time Reversal in Quantum Mechanics (for spin 1/2) :

- ► action **T** : $\mathbf{k} \rightarrow -\mathbf{k}$; $\sigma \rightarrow -\sigma$ $(T = e^{\frac{i}{\hbar}\pi S_y} K)$
- ► $T^2 = -I$ (rotation by 2π of spin $\frac{1}{2}$)
- Kramers degeneracy : if $|u\rangle$ is an eigenstate of H, then T $|u\rangle$ is a

distinct eigenstate with same energy

Application to bands in a crystal : Time reversal symmetry

- Relates spectrum at k and -k
- Except at the Time Reversal
 Invariant Momenta Λ_i(•) where
 - $-\mathbf{k} = \mathbf{k} + \mathbf{G}$
 - \Rightarrow imposes degeneracy

Inversion / Parity Symmetry

Inversion / Parity Symmetry

Z2 Topological Order in a simplified Four Bands Model

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007) Bernevig, Hughes and Zhang, Science **314** (2006)

Spin dependent Time Reversal Symmetric Insulator band structure

Z2 Topological Order in a simplified Four Bands Model

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007) Bernevig, Hughes and Zhang, Science **314** (2006)

- Spin dependent Time Reversal Symmetric Insulator band structure
- Simplest Spin dependent Hamiltonian Time Reversal Symmetric :

Four Level System, two spin $\frac{1}{2}$: $\sigma \otimes S$

Bloch Hamiltonian parametrized as

$$H(k) = d_0(\mathbf{k})\mathbb{I} + \sum_{i=1}^5 d_i(\mathbf{k})\,\Gamma_i + \sum_{i>j} d_{ij}(\mathbf{k})\,\Gamma_{ij}$$

▶ 5 Dirac matrices : $\{\Gamma_a, \Gamma_b\} = 2\delta_{a,b}$ ▶ 10 additional matrices : $\Gamma_{a,b} = \frac{1}{2i} [\Gamma_a, \Gamma_b]$

Z2 Topological Order in a simplified Four Bands Model

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007) Bernevig, Hughes and Zhang, Science **314** (2006)

- Simplest Spin dependent Hamiltonian Time Reversal Symmetric : Four Level System, two spin ½ : $\sigma \otimes S$ Bloch Hamiltonian parametrized as $H(k) = d_0(\mathbf{k})\mathbb{I} + \sum_{i=1}^{5} d_i(\mathbf{k}) \Gamma_i + \sum_{i>j} d_{ij}(\mathbf{k}) \Gamma_{ij}$
 - ▶ 5 Dirac matrices : $\{\Gamma_a, \Gamma_b\} = 2\delta_{a,b}$ ▶ 10 additional matrices : $\Gamma_{a,b} = \frac{1}{2i} [\Gamma_a, \Gamma_b]$ We can choose :
 - ▶ Γ_1 as the Parity operator P : $\mathbf{k} \rightarrow \mathbf{k}$
 - ▶ matrices $\Gamma_{i>1}$ are even under PT : $(PT)\Gamma_i(PT)^{-1} = \Gamma_i$
 - ▶ matrices Γ_{ij} are odd under PT : $(PT)\Gamma_{ij}(PT)^{-1} = -\Gamma_{ij}$

... Simplest model : keep only 3 matrices

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007) Bernevig, Hughes and Zhang, Science **314** (2006)

Four Level System, two spin $1\!\!\!/_2$: $\sigma \otimes S$

$$H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$$

1. Kane Mele Model

- Identical atomic orbitals (e.g. pz)
- bipartite lattice (graphene) with 2 sublattices A and B
- ▶ Sublattice basis : $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$
- ▶ Parity operator : exchanges A and B sublattices : $\Gamma_1 = \sigma_x \otimes I$
- ▶ $\Gamma_2 = \sigma_y \otimes I$, $\Gamma_3 = \sigma_z \otimes s_z$

2. Bernevig-Hughes-Zhang Model

- Atomic orbitals with opposite parity (e.g. s,pz)
- ▶ Parity basis : $(s \uparrow, s \downarrow, p \uparrow, p \downarrow)$
- ▶ Parity operator : diagonal, : $\Gamma_1 = \sigma_z \otimes I$
- ▶ $\Gamma_2 = \sigma_y \otimes I$, $\Gamma_3 = \sigma_x \otimes s_z$

... different band structures, but same Z₂ topological order

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007) Bernevig, Hughes and Zhang, Science **314** (2006)

Four Level System, two spin $1\!\!\!/_2$: $\sigma \otimes S$

$$H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$$

1. Kane Mele Model

- Identical atomic orbitals (e.g. pz)
- bipartite lattice (graphene) with 2 sublattices A and B
- ▶ Sublattice basis : $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ Parity operator : exchanges A and B sublattices : $\Gamma_1 = \sigma_x \otimes I$

▶ $\Gamma_2 = \sigma_y \otimes I$, $\Gamma_3 = \sigma_z \otimes s_z$

2. Bernevig-Hughes-Zhang Model

Atomic orbitals with opposite parity (e.g. s,pz)

- ▶ Parity basis : $(s \uparrow, s \downarrow, p \uparrow, p \downarrow)$
- ▶ Parity operator : diagonal, : $\Gamma_1 = \sigma_z \otimes I$
- ▶ $\Gamma_2 = \sigma_y \otimes I$, $\Gamma_3 = \sigma_x \otimes s_z$

... different band structures, but same Z₂ topological order

Four Level System, two spin ½ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$ $H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$

- ▶ Parity operator (A \leftrightarrow B) : $\Gamma_1 = \sigma_x \otimes I$
- ▷ Γ₂ =σ_y⊗I, Γ₃ =σ_z⊗s_z
- ▶ Time Reversal Operator : T = i (I⊗s_y).K

Complex Conjugation

Purpose :

- impose insulator band structure (gap)
- determine the eigenfunctions of the filled bands (obstruction or not ?)

$$\begin{bmatrix} d_1(k), d_2(k), d_3(k) \end{bmatrix}$$

 $\Gamma_1 = \sigma_x \otimes I$, $\Gamma_2 = \sigma_v \otimes I$, $\Gamma_3 = \sigma_z \otimes s_z$

Four Level System, two spin ½ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$ $H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$

▶Eigenenergies : $E_{1/2}(\mathbf{k}) = \pm \sqrt{d_1^2(\mathbf{k}) + d_2^2(\mathbf{k}) + d_3^2(\mathbf{k})}$

 \rightarrow d₁(**k**),d₂(**k**),d₃(**k**) cannot simultaneously vanish

Eigenstates of the filled band (arbitrary phase convention) :

$$|u_{1,\mathbf{k}}^{I}\rangle = \frac{1}{\mathcal{N}_{1}} \begin{pmatrix} 0 \\ -d_{3} - ||d|| \\ 0 \\ d_{1} + id_{2} \end{pmatrix} \qquad |u_{1,\mathbf{k}}^{II}\rangle = \frac{1}{\mathcal{N}_{1}} \begin{pmatrix} d_{3} - ||d|| \\ 0 \\ d_{1} + id_{2} \\ 0 \end{pmatrix}$$

Four Level System, two spin ½ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$ $H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$

$$\Gamma_1 = \sigma_x \otimes I, \ \Gamma_2 = \sigma_y \otimes I, \ \Gamma_3 = \sigma_z \otimes s_z$$

Eigenstates of the filled band (arbitrary phase convention) :

$$|u_{1,\mathbf{k}}^{I}\rangle = \frac{1}{\mathcal{N}_{1}} \begin{pmatrix} 0 \\ -d_{3} - ||d|| \\ 0 \\ d_{1} + id_{2} \end{pmatrix} \qquad |u_{1,\mathbf{k}}^{II}\rangle = \frac{1}{\mathcal{N}_{1}} \begin{pmatrix} d_{3} - ||d|| \\ 0 \\ d_{1} + id_{2} \\ 0 \end{pmatrix}$$

states ill-defined for $d_1 + id_2 = te^{i\theta} \to 0$

$$\begin{split} |u_1^I\rangle &\to \begin{pmatrix} 0\\ -1\\ 0\\ 0 \end{pmatrix} \quad \text{and} \quad |u_1^{II}\rangle \to \begin{pmatrix} 0\\ 0\\ e^{i\theta}\\ 0 \end{pmatrix} \quad (d_3 > 0) \\ |u_1^I\rangle \to \begin{pmatrix} 0\\ 0\\ 0\\ e^{i\theta} \end{pmatrix} \quad \text{and} \quad |u_1^{II}\rangle \to \begin{pmatrix} -1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix} \quad (d_3 < 0) \end{split}$$

Does d₁=d₂=0 occurs ?

Four Level System, two spin ½ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$ $H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$

▶ Parity operator (A
$$\leftrightarrow$$
B) : $\Gamma_1 = \sigma_x \otimes I$

▷ Γ₂ =σ_y⊗I, Γ₃ =σ_z⊗s_z

▶ Time Reversal Operator : T = i (I⊗s_y).K

Symmetry constraints :

$$P = \Gamma_1 : P \Gamma_1 P^{-1} = \Gamma_1, T \Gamma_1 T^{-1} = \Gamma_1$$

$$P \Gamma_2 P^{-1} = -\Gamma_2, T \Gamma_2 T^{-1} = -\Gamma_2$$

$$P \Gamma_3 P^{-1} = -\Gamma_3, T \Gamma_3 T^{-1} = -\Gamma_3$$

T symmetry : T H(k) T⁻¹ = H(-k) \Rightarrow d₁(k) even, d₂(k), d₃(k) odd functions

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007)

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ T symmetry \Rightarrow d₁(**k**) even, d₂(**k**), d₃(**k**) odd functions

```
▶ eigenstates ill-defined for d<sub>1</sub>=d<sub>2</sub>=0
```


C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007)

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ T symmetry \Rightarrow d₁(**k**) even, d₂(**k**), d₃(**k**) odd functions

▶ eigenstates ill-defined for d₁=d₂=0

 \triangleright d₂ has to vanish along lines connecting the Λ_i

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007)

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ T symmetry \Rightarrow d₁(**k**) even, d₂(**k**), d₃(**k**) odd functions

▶ eigenstates ill-defined for d₁=d₂=0

d₁ >0 d₁ <0

 \blacktriangleright d₂ has to vanish along lines connecting the Λ_i

▶ if d_1 uniform sign \Rightarrow no singularity

 \Rightarrow trivial topology (unique phase convention)

C.L.Kane and E.J.Mele PRL **95** (2005) Fu, Kane, PRB **76** (2007)

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ T symmetry \Rightarrow d₁(**k**) even, d₂(**k**), d₃(**k**) odd functions

eigenstates ill-defined for d₁=d₂=0

d₁ >0 d₁ <0

- \blacktriangleright d₂ has to vanish along lines connecting the Λ_i
- ▶ if d_1 uniform sign \Rightarrow no singularity
 - ⇒ trivial topology (unique phase convention)
- ▶ if d₁ changes sign around 1 Λ_i
 - \Rightarrow 2 singularities appear (for 1 phase convention)
 - ⇒ twisted topology (obstruction)

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ T symmetry \Rightarrow d₁(**k**) even, d₂(**k**), d₃(**k**) odd functions

eigenstates ill-defined for d₁=d₂=0

d₁ >0 d₁ <0

- \blacktriangleright d₂ has to vanish along lines connecting the Λ_i
- ▶ if d_1 uniform sign \Rightarrow no singularity
 - ⇒ trivial topology (unique phase convention)
- \blacktriangleright if d₁ changes sign around 1 Λ_i
 - \Rightarrow 2 singularities appear (for 1 phase convention)

C.L.Kane and E.J.Mele PRL 95 (2005)

Fu, Kane, PRB 76 (2007)

- \Rightarrow twisted topology (obstruction)
- \blacktriangleright d₁ changes sign around 2 Λ_i
 - \Rightarrow 4 singularities appear

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

▶ T symmetry \Rightarrow d₁(**k**) even, d₂(**k**), d₃(**k**) odd functions

▶ eigenstates ill-defined for d₁=d₂=0

d₁ >0 d₁ <0

- \blacktriangleright d₂ has to vanish along lines connecting the Λ_i
- ▶ if d_1 uniform sign \Rightarrow no singularity
 - ⇒ trivial topology (unique phase convention)
- \blacktriangleright if d₁ changes sign around 1 Λ_i
 - \Rightarrow 2 singularities appear (for 1 phase convention)
 - \Rightarrow twisted topology (obstruction)
- \blacktriangleright d₁ changes sign around 2 Λ_i
 - \Rightarrow 4 singularities appear, but can be removed
 - \Rightarrow trivial topology

Four Level System, two spin $\frac{1}{2}$ ($\sigma \otimes S$): $(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$

Kane and Mele (1995) Fruchart *et al.* (2013)

Topological index :

$$\prod_{i=1}^{4} \operatorname{sgn}(d_1(\Lambda_i)) = (-1)^{\nu}$$

Kane-Mele topological invariant

2Nx2N antisymmetric matrix : $m_{ij}(\mathbf{k}) = \langle u_i(\mathbf{k}) | T u_j(\mathbf{k}) \rangle$

Topological index ν : counts the parity of number of zeros of Pf(m)

 $\uparrow k_y$

$$\nu = \frac{1}{2\pi i} \oint_{\partial \mathrm{EBZ}} d\log \mathrm{Pf}(m) \mod 2$$

d₁ >0 ■ d₁ <0 Wavefunctions ill-defined for k_x k_x $d_1 + id_2 = te^{i\theta} \to 0$ π π $k_y 0$ $0k_y$ $-\pi$ $-\pi$ $-\pi$ π $\begin{array}{c} 0 \\ k_x \end{array}$ π $\begin{array}{c} 0 \\ k_x \end{array}$ $-\pi$ $Pfm = \frac{d_1 (d_1 + id_2)}{\sqrt{(d_1^2 + d_2^2) (d_1^2 + d_2^2 + d_2^2)}}$ Phase of Pf(m)

 $\uparrow k_y$

Kane and Mele (1995)

2Nx2N antisymmetric matrix : $m_{ij}(\mathbf{k}) = \langle u_i(\mathbf{k}) | T u_j(\mathbf{k}) \rangle$

Topological index ν : counts the parity of number of zeros of Pf(m)

$$\nu = \frac{1}{2\pi i} \oint_{\partial \text{EBZ}} d\log \text{Pf}(m) \mod 2$$

 $\begin{array}{c} \pi \\ k_{y} \\ k_{y} \\ -\pi \\ -\pi \\ -\pi \\ -\pi \\ k_{x} \\ k_{x} \\ k_{x} \\ k_{x} \\ m \end{array}$

Topological index :
▶ if P and T symmetries :
$$\prod_{i=1}^{4} \operatorname{sgn}(d_1(\Lambda_i)) = (-1)^{\nu}$$
▶ if I/II good spin quantum numbers $\nu = \frac{C_I - C_{II}}{2} \mod 2$

Topological order \iff sign of d₁ at the Λ_i points \iff surface states

vendredi 13 septembre 13

Topological order \iff sign of d₁ at the Λ_i points \iff surface states

Bernevig-Hughes-Zhang model

d₁ >0 d₁ <0

(band inversion scenario)
$$H(k) = d_1(k) \Gamma_1 + d_2(k) \Gamma_2 + d_3(k) \Gamma_3$$

Parity basis : $(s \uparrow, s \downarrow, p \uparrow, p \downarrow)$ $\Gamma_1 = \sigma_z \otimes I$ (diagonal operator)

ky

$$\begin{split} &\Gamma_2 = \sigma_y \otimes I, \ \Gamma_5 = \sigma_x \otimes s_z \\ & d_1 \text{ is even around the } \Lambda_i \ (d_1(-\mathbf{k}) = d_1(\mathbf{k})), \\ & d_{i>1} \text{ are odd around the } \Lambda_i \end{split}$$

Wavefunctions ill-defined at the Λ_i $d_2 + id_3 = t e^{i\theta}, t \to 0$ $|u_1^-\rangle \to \frac{1}{\mathcal{N}_1} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \text{ and } |u_2^-\rangle \to \frac{1}{\mathcal{N}_2} \begin{pmatrix} 0\\0\\1\\2 \end{pmatrix} \qquad (d_1 > 0)$

$$\frac{1}{1} \rightarrow \frac{1}{\mathcal{N}_{1}} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \quad \text{and} \quad |u_{2}^{-}\rangle \rightarrow \frac{1}{\mathcal{N}_{2}} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \quad (d_{1} > 0)$$

$$\frac{1}{1} \rightarrow \frac{1}{\mathcal{N}_{1}} \begin{pmatrix} 0\\ie^{-i\theta}\\0\\0\\0 \end{pmatrix} \quad \text{and} \quad |u_{2}^{-}\rangle \rightarrow \frac{1}{\mathcal{N}_{2}} \begin{pmatrix} ie^{-i\theta}\\0\\0\\0\\0 \end{pmatrix} \quad (d_{1} < 0)$$

Different singularities, but same topological order

 \Rightarrow necessity for a general definition of Z₂ topological order

See K. Gawędzki talk

Z₂ topological order from wavefunctions M. Fruchart, K. Gawedzki (ENS Lyon)

Introduction to Topological Order in Insulators M. Fruchart, D. Carpentier and K. Gawedzki, CRAS (2013)

Physical properties of Top. Ins. surfaces states C. Petitjean, E. Orignac, A. Fedorenko (ENS Lyon) Coll.: L. Lévy, T. Meunier (Néel Grenoble)

Graphene-based heterojunction between two topological insulators O. Shevtsov, et al., Phys. Rev. X **2**, 031004 (2012)

Tunable thermopower in a graphene-based topological insulator O. Shevtsov, et al., Phys. Rev. B **85**, 245441 (2012)

Topological surface states of strained Mercury-Telluride probed by ARPES O. Crauste, et al., arXiv:1307.2008

Support : ANR IsoTop/2010 and ANR SemiTopo/2012

Thank you for your attention